The Next Giant Solar Flare is Unavoidable! Will it Bomb Us Back Into the Stone Ages?

Will a Major CME Event Happen Again?

CMEs occur in the context of the Sun’s 11-year solar cycle when its activity peaks and declines. We’re near a peak in the next year or so. During this brief period, the sun’s magnetic field lines are especially chaotic, with the rapid acceleration of charged particles that can be ejected as solar flares and CMEs.

Direct-hit CME events like the ones in 1000 CE and 1859 are the culmination of a series of worst-case scenarios.

When a CME contains atoms, electrons, and ions with sufficient energy … and the ejection is pointed precisely so that it will impact Earth (itself a moving target in orbit) … and the magnetic fields of the CME and Earth are “anti-aligned,” the occurrence will indeed spell trouble – more than just night lights and auroral light shows. But we’ll get to that in a minute.

In most cases, though, the CMEs emitted by the Sun have relatively low energy, they’re off target, and/or they’re deflected by Earth’s magnetic shield.

The National Oceanic and Atmospheric Administration has estimated that a CME “Carrington Event” could be expected to impact the Earth approximately once every 500 years or less.

We reportedly dodged a bullet in July 2012 when a powerful CME ejected in our direction, passing through a point in space just nine days away from where we were orbiting at 30 kilometers per second.

Knocking out Power Stations and Grids

In the years since 1859, our electrical infrastructure has become widespread and interconnected. If a CME’s massive geomagnetic-induced surge of current encounters any of the infrastructure of our electric grid system, we’ll see explosions, fires, and blackouts at our power stations and substations that could leave major areas without electricity. Extend that impact to multistate regions or even worldwide, and the results could be unimaginable. But we had better imagine them because “once every 500 years” can’t be ignored.

Disrupting Communications

As if losing all electricity wasn’t enough of a disaster, CMEs and significant solar flares can disrupt important communications systems.

Located in the Earth’s upper atmosphere, the ionosphere serves as a refractory surface that enables long-distance shortwave communication, a communication method known as “skywaving.” Solar flares affect the stability of the ionosphere and put this communication at risk.

GPS systems rely on a stable ionosphere for radio transmissions. CME disturbances can send these measurements off-kilter by dozens of feet, with disastrous consequences for some sensitive systems.

Skywaving is used in aircraft, military and other communication systems that can’t utilize private-sector, satellite-based communication services. Fortunately, more and more communication satellites are being placed in low-Earth orbits, supporting a more reliable, extended skywave refractory system.

But then again, Earth-orbit satellites are easily damaged by energy bombardment from significant solar flares and CMEs. Communications satellites in upper geosynchronous orbit are especially vulnerable.

Secondary Impacts

Without electricity for an extended period of time, our lifestyle as we know it would be completely disrupted and we’d become immersed in the literal and figurative dark ages.

Backup generators would run out of fuel in a matter of hours or days. After that, to put it mildly, the Internet would be “down.” And since more and more of our financial, healthcare, communication, utilities, and transportation systems rely on the Internet and Internet-empowered blockchain, these systems would go down as well.

What was daily life like in 1830? We’d all better read up on it because we may need to live in that world for weeks at a time. Many won’t survive it, unfortunately, and succumb to floods, cold, heat, illness, lawlessness, crashes, and hunger.

What Can We do to Prevent a Future CME Disaster?

We can’t prevent a one-in-500-years, Earth-impacting CME, but we can and must make some adjustments to our systems in order to limit or prevent the kinds of worst-case scenarios described above.

We’re already making progress in some important areas … but much more can be done.

Early Detection

Fortunately, CMEs don’t travel at the speed of light; they take anywhere from 15 hours to several days to reach Earth. We’ll have time to see them coming if we have appropriate Earth- and space-based detection systems in place so we can take protective measures. We need to continue to develop our early warning systems like that at the National Science Foundation’s Daniel K. Inouye Solar Telescope on Maui. Earlier warnings about possible CMEs give power plant operators an opportunity to appropriately prepare for a likely surge and give satellite operators time to put their satellites into safe modes.

Electrical Grounding/Earthing

As basic as it may sound, electric grid infrastructure can be protected from CMEs if they’re properly grounded using copper or other conductive materials that send the surges safely into the ground. We need to ensure that every power plant, substation, and other critical pieces of power grid infrastructure is protected in this way.

If we don’t take these actions, a major CME event might not destroy the Earth, but in just a few hours, it could bomb us back into the pre-technology stone ages.

Source link